Cationic polymer coatings for design of electroosmotic flow and control of DNA adsorption

نویسندگان

  • Xuezhu Liu
  • David Erickson
  • Dongqing Li
  • Ulrich J. Krull
چکیده

A difficulty with the design and operation of an electrokinetically operated DNA hybridization microfluidic chip is the opposite direction of the electroosmotic flow and electrophoretic mobility of the oligonucleotides. This makes it difficult to simultaneously deliver targets and an appropriate hybridization buffer simultaneously to the probe sites. In this work we investigate the possibility of coating the inner walls of the microfluidic system with hexadimentrine bromide (polybrene, PB) and other cationic polymers in order to reverse the direction of electroosmotic flow so that it acts in the same direction as the electrophoretic transport of the oligonucleotides. The results indicated that the electroosmotic flow (EOF) in channels that were coated with the polymer could be reversed in 1× TBE buffer or 1× SSC buffer. Under these conditions, the DNA and EOF move in the same direction, and the flow can be used to deliver DNA to an area for selective hybridization within the channel. The effects of coating the surface of a nucleic acid microarray with polybrene were also studied to assess non-selective adsorption and stability. The polybrene coating significantly reduced the extent of non-selective adsorption of oligonucleotides in comparison to adsorption onto a glass surface, and the coating did not alter the extent of hybridization. The results suggest that use of the coating makes it possible to achieve semi-quantitative manipulation of nucleic acid oligomers for delivery to an integrated microarray or biosensor. © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA.

Physically adsorbed (dynamic) polymeric wall coatings for microchannel electrophoresis have distinct advantages over covalently linked coatings. In order to determine the critical factors that control the formation of dynamic wall coatings, we have created a set of model polymers and copolymers based on N,N-dimethylacrylamide (DMA) and N,N-diethylacrylamide (DEA), and studied their adsorption b...

متن کامل

Cation-selective electropreconcentration.

A cation-selective microfluidic sample preconcentration system is described. The cation sample was electropreconcentrated using a reversed-direction electroosmotic flow (EOF) and an anion-permselective filter, where an electric double layer (EDL) overlap condition existed. The anion-permselective filter between microchannels was fabricated by three different methods: 1) extending a positively c...

متن کامل

Influence of polymer structure on electroosmotic flow and separation efficiency in successive multiple ionic layer coatings for microchip electrophoresis.

The effect of successive multiple ionic layer (SMIL) coatings on the velocity and direction of EOF and the separation efficiency for PDMS electrophoresis microchips was studied using different polymer structures and deposition conditions. To date, the majority of SMIL studies have used traditional CE and fused-silica capillaries. EOF was measured as a function of polymer structure and number of...

متن کامل

Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.

Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecu...

متن کامل

Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices.

Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F(108), poly(L-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-D-maltoside and methyl cellulo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004